Participatory Chestnut Breeding

Characterizing Genetic Diversity and Ancestry of Superior On-farm Germplasm

Ronald Revord¹, Gregory Miller², Jeanne Romero-Severson³, Michael Gold¹, Nick Meier¹, and J. Bryan Webber¹ ¹University of Missouri Center for Agroforestry, School of Natural Resources, Columbia, MO, USA ²Empire Chestnut Farm, Carrolton, OH, USA

³University of Notre Dame, Department of Biological Sciences, South Bend, IN, USA

The Center's Chestnut Improvement Activities

To-date

- 1. Cultivar conservation and maintenance
- 2. Cultivar evaluation
- 3. OP seed and scion distribution

New

- 1. On-farm evaluation
- 2. Core collection assembly
- 3. In situ conservation
- 4. Systematic, participatory breeding

Repository Maintenance

- "Refreshing" the UMCA repository (65 cvs.)
- Propagating the collection to ensure a sufficient number of healthy ramets
 - 400 grafts made in 2021, ~80% rate
- New entries (17) from G. Miller, M. Nave, and T. Wahl:

'Ace', 'Bergantz', 'Beth', 'Chandler', 'Emalyn's Purple', 'Hansen', 'Kyoung', 'Nanjing Special', 'Nanking', 'Liu', 'Patterson', 'QingSu', 'Red Shed', 'Scharlbaum', 'Vancouver', 'WC'.

Cultivar Trials Ongoing

2019 Chestnut Cultivar Trial 100-Nut Sample Weights

2019 Chestnut Cultivar Trial Yields

Open-pollinated Seed Distribution

- Four classes of OP seed provided since 2008:
 - Specific cultivars
 - Bulk from 'Peach' × 'Qing' × Kohr' orchard
 - Bulk from the repository (all cultivars)

In 2020,

- >1,600 lbs of OP seed shipped to 70 indivs.
- >1,400 lbs shipped to three nursery partners
- The 2021 UMCA order form is improved and will soon be published.

Open-pollinated Seed Distribution

- Over 1,000 growers have received seed from the UMCA directly or through nursery partners
- A massive pre-breeding resource for diverse environments
- How to best build on these materials?

Coordinated Evaluation & Breeding

- Why participatory?
 - The sum is greater than the parts.

"Chestnuts are **grown over a wide geographic and climatic range** in the USA. We are still **discovering the adaptation limits** of available chestnut material. [...] we are **a long way from finding and knowing** what is both best adapted and best performing in the various regions. Major components of yield and nut quality are probably independent of regional adaptation." G. Miller, NNGA 2017.

• A major takeaway is the need for core collection assembly of on-farm selections

"a limited set of accessions representing the genetic diversity with minimum of repetitiveness (Frankel 1984)." Breeding Chestnuts for Nut Quality and Yield in Eastern North America A Cooperative Breeding Program

Greg Miller, Route 9 Cooperative, Carrollton Ohio NNGA 2017

Cooperative Chestnut Breeding in the USA

Greg Miller Empire Chestnut Company Route 9 Cooperative

http://www.chestnutgrowers.org/GregMiller-CooperativeBreeding.pdf

USDA-AMS Grant Overview

- Awarded a USDA-AMS grant of \$923k in 2020 to carry out systematic on-farm evaluations
- i. Formalize a participant network as a new breeding initiative
- ii. Characterize genetic diversity in on-farm selections' traits of interest
- iii.Use EST-SSRs to discern on-farm selections' ancestry & parentage

iv.Utilize data from ii. & iii. to construct core collections for conservation and breeding

Core Collection Assembly Assumptions/Goals

- Seedling composition on-farm
- Evaluation 5-8% of growers' "best" trees (600-1,000 trees)
- Grower observations can guide evaluations to these "best" trees
- "Best" defined as:
 - i. Stable interannual yieldii. Low nut quality defectsiii.Unique recombinants
 - i. e.g., male sterility w/ high kernel quality
- Identify a subset (~10%) to be conserved as a core collection

Numbers of Trees Planted per Family

Szego	781	B71	426
Luv Monster	874	72-76	106
Ace	836	Dunstan	20
Kintzel	420	Jers Gem	90
Liu	890	PQK	300
Peach	976	Perry	120
Qing	1024	Payne	120
Kohr	1124	Yixian	120
Gideon	1049	Wynn Mill	10
Sleeping Giant	909	Hong Kong	380
AU-Home	730	Chandler	10
AU-Super	280	B68	130
B65	416	Damiano	430

23 Families 3 Populations 12,571 Individuals

G. Miller NNGA 2017

Participants

- 12 growers representing 5 states in 2020 (287 trees)
- 30 growers (red) across 11 states in 2021
 - delayed due to the 2020 frost
 - Expect >600 trees

Please contact us if you'd like to participate

- Email J. Bryan Webber (jbwebber@missouri.edu) and myself (r.revord@missouri.edu)
- What's needed:
 - 30-nut sample per tree
 - Twig tissue for genotyping
 - Dialogue on which trees to include and why
- Commitments beyond the above are not needed at this time; there is no obligation to provide seed, scion, or pollen.

Phenotyping

- Field traits (7)
 - Architectural characters
 - Yield estimate
 - Fruiting-pattern
- Nut and kernel quality (16)
 - Size, Shape
 - Color, Texture, Taste
 - Pellicle removal, embryo#
 - Weevil/spoilage resistant
- Leaf morphologies (5)
- Pests and diseases (7)
 - Blight, Phytophthora
 - Gall wasp, Weevil
 - Spoilage mold(s)

Speaking of spoilage molds

- Four replication of 16 nuts per time point
- Exterior mold (on shell) incidence predominantly arises after 60-days
- Exterior mold resistance suggested in 'Mossbarger' and 'Qing'

Speaking of spoilage molds

- Similar results with interior mold incidence (i.e., pellicle and kernel)
 - 'Hong Kong' incidence much higher
- Interior mold incidence predominantly arises after 60-days
- Interior mold resistance suggested in 'Mossbarger' and 'Qing'
 - Although greater levels of mold than on the exterior

Preliminary Data Snapshot

- Considerable variation observed across all traits
- Trait variation explained sometime by maternal family, other times the individual

Preliminary Data, Phenotype Subset

- Complimentary next-gen parents revealing themselves (heat map)
- Next multivariate analysis a full-view of how genetic diversity is partitioned (PCA, DPCA)

Genotyping

- Use 45 EST-SSRs developed by the Romero-Severson Lab to discern on-farm selections' ancestry & parentage
- Utilize this data in tandem with phenotypic and geography information to assemble "consensus core collections"

Participatory Breeding – Looking Forward

Breeding Goals by Class

- 1. Stable production by environment
 - Major effect traits is frost avoidance, like late leafing 'Qing'
 - Local adaptations, likely many genes contributing minor effects
- 2. Durable resistance
 - BER, Phytophthora spp., leaf pests, gall wasps, storage molds
- 3. High Kernel Quality, low defects
- 4. High yield
 - Male sterility, canopy architecture, burrs/shoot

*Emphasis is placed on both the performance of the individual as well as its offspring

Controlled Pollinations

Scale of Controlled Cross

- Aim to generate around 10,000 fullsibling offspring in 2021
 - 4,000 pollination bag, dedicated crew
- Near-term emphasis is to utilize genetic resources
 - i. a large systematic partial diallel
- ii. Mapping population development

Long-term emphasis is to incorporate on-farm selections to develop region-minded progeny

2021 Cross Design *Concept

	Yixian Large			Sleepin					Mossh	Marigo	Luvall's Monst			Hong		Bouche de		Auburr Homes	
			Szego	g Giant	Qing	Perry	Peach	Payne				Kohr	Jenny		Gideon				Amy
Amy	х																		
Auburn Homestead	х	х																	
Auburn Super		х	х																
Bouche de Betizac			х	х															
Gideon				х	х														
Hong Kong						х	х												
Jenny							х	х											
Kohr								х	х										
Luvall's Monster								х	х	х		х							
Marigoule										х									
Mossbarger										х		х	х						
Payne												х	х						
Peach													х	х					
Perry														х					
Qing														х	х	х			
Sleeping Giant															х	х			
Szego																х	х		
Yixian Large Nut																х	х	х	х
Yixian Great Flavor																x	х	x	х

E-Brida

- Germplasm management database
 - In situ conservation
 - Facilitate on-farm progeny evaluation
- Could-based data archiving
- Ease data collection accuracy, maintenance, and sharing

E-Brida

∎ AT&T Wi-Fi 🗢	8:23 AM	© √ 2 100% 💳
4/12/21 Chest	nut, 2021 HARC Rep	Julian date Done
< (0037 (R01T04) R01T04,Gideon	>
Plot	s Properties	1 · · ·
Find plot		Find
0043 * R01T01, Jersey Gem		R01T01
0041 * R01T02,Jenny		R01T02
0015 * R01T03,Benton Harbor		R01T03
0037 R01T04,Gideon		R01T04
0023 * R02T01,Dallas City Stre	eet	R02T01
0045 R02T02,Kohr		R02T02
0048 * R02T03,Luvall's Monst	er	R02T03
Group Code Location R01T04 New Fra	n Pl anklin, Missouri Gi	Ancestry deon Gideon
A	รับเสี	m

juni,

囲

AT&T LTE		🕈 🖉 ត 81% 🗖
- HARC	Sprina Phenoloav	2021
Cancel	Properties	Done
	Plots Subplots	
	perties you would like to east one property is visib	
Show all		Hide al
Greentip Vis	ible	C
First Leaves	Unfold	
Shoot Growt	h Begins	C
Male Catkins	s Visible	
Glomerules ^v	Visible	C
Female Flow	ers Visible	C
Stigma visib	le	C
First Male Fl	owers Open	C
10 -20% of N	Male Flowers open	C
Full Male Flo	wering	

Ħ		HARC Sprin	ng Phenology	2021	Done
<		3	0068 (CT2) CT2,Peach		>
Greentip Visible	First Leaves Unfold	Growth Be	O Male Catkins Vi	Glomerul es Visible	Female Flowers Vi
4/14/21	4/20/21	4/26/21	O 5/2/21	5/8/21	5/29/21
			(1/3)		0
8			Juc		Ħ
*		00	ng Phenology 029 (R10T09) 0T09,Eaton River	2021	
Search) prints	Find	T T III			
Plots	Greentip Visible	First Leav Unfold	es Shoot Gro Begins	wth Male Catkin Visible	s Glomerules Visible
0017 CT1,Byron CT1	4/14/21	4/20/21	4/26/21	5/2/21	5/9/21
0068 CT2,Peach CT2	4/14/21	4/20/21	4/26/21	5/2/21	5/8/21
0043	4/9/21	4/24/21	4/27/21	5/2/21	\$
500			0		Ŧ

RESOURCES:

- Diverse environments
- Large land area, tree care
- Selection criteria insights
- Program support labor
- Income from chestnut sales

RESOURCES:

- Website & database hosting
- Genetic & molecular expertise
- Dedicated research personnel
- Laboratory & data analysis facilities
- Information dissemination

Thank you!

This work is supported by the USDA-AMS, the University of Missouri Center for Agroforestry and the USDA/ARS Dale Bumpers Small Farm Research Center.

